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A model of six-species food web is studied in the viewpoint of spatial interaction structures. Each species
has two predators and two preys, and it was previously known that the defensive alliances of three cyclically
predating species self-organize in two dimensions. The alliance-breaking transition occurs as either the muta-
tion rate is increased or interaction topology is randomized in the scheme of the Watts-Strogatz model. In the
former case of temporal disorder, via the finite-size scaling analysis, the transition is clearly shown to belong
to the two-dimensional Ising universality class. In contrast, the geometric or spatial randomness for the latter
case yields a discontinuous phase transition. The mean-field limit of the model is analytically solved and then
compared with numerical results. The dynamic universality and the temporally periodic behaviors are also
discussed.
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The rock-scissors-paper �RSP� game �1� gives a typical
three-strategy model of cyclical predator-prey food chain if
rock, scissors, and paper are replaced by different competi-
tive species in biology. In this simple game, a rock beats a
pair of scissors, a pair of scissors beat a sheet of paper, and a
sheet of paper beats a rock. As generalizations of the RSP
game, the food webs composed of different numbers of spe-
cies show a variety of interesting behaviors �2�. Especially,
the models proposed by Szabó and Czárán in Refs. �3,4�
have been shown to self-organize to form the defensive alli-
ances, which become unstable as the mutation rate is in-
creased.

In the present study, we use the model A in Ref. �3� de-
scribed by the interaction topology in Fig. 1�a�, where the six
species weave a food web that is more complicated than the
RSP game: Each species has two predators, two preys, and
one neutral interacting partner. There indeed exist ecological
systems showing the cyclic dominance: Examples include
the three-morph mating system in the side-blotched lizard in
which each morph dominates another morph when rare �5�.
Another example is the system of three different populations
of Escherichia coli �1� composed of toxin-producing �T�,
toxin-resistant �R�, and toxin-sensitive �S� strains. If the
growth rate of each group satisfies S�R�T, the RSP game
captures the cyclic dominance in the system: T dominates
S �S is killed by T�, S dominates R due to the higher growth
rate, and R dominates T for the same reason. If bacteria
produce two different toxins, the food web is constructed
from nine different species as has been well studied in Ref.
�4�.

The main interest here is to study the effect of the spatial
interaction structure and for that purpose, we play the
predator-prey game on the complex network structure of the

Watts-Strogatz �WS� network �6� constructed on two-
dimensions �2D� as follows: �i� We first build the 2D L
�L�N�L2� regular square lattice. �ii� Every bond is visited
once, and with the rewiring probability � it is rewired to the
randomly chosen other site. The above procedure then yields
a network structure which possesses characteristics such as
the short characteristic path length �6,7�.

Once the network is built as described above, the time
evolution of the system obeys the following rules �3�: �i� Six
species are scattered randomly on a square lattice as in Fig.
1�b�, then �ii� the species on each randomly chosen site is
mutated to one of its predating species with the mutation rate
P. �iii� If no mutation occurs �with the probability 1− P�, one
of the nearest neighbors is chosen to interact, and the domi-
nant one survives and invades the subordinated one. For ex-
ample, if the pair of species 0 and 1 are chosen, the species 1
is replaced by the species 0 �see Fig. 1�a��. If two neutral
partners have been chosen, i.e., no arrow connects the two
species in Fig. 1�a�, nothing happens. For the 2D regular
square lattice corresponding to the rewiring probability �
=0, it has been found that the defensive alliances composed
of three species, �0,2,4� or �1,3,5�, are spontaneously formed
at a small mutation rate and the other species that does not
belong to the alliance dies out �3� �see Fig. 1�c��. As the
mutation rate is increased, it has been shown �3� that the
defensive alliance becomes unstable and there occurs well-
defined phase transition of the universality class of the 2D
Ising model �8�, which is expected because of the existence
of the Z2 symmetry: Interchange of two alliances
�0,2 ,4�↔ �1,3 ,5� do not change the game rules, which we
call here interalliance symmetry. The spontaneous breaking
of the defensive alliance originates either from the high mu-
tation rate P or from the high degree of structural random-
ness controlled by the rewiring probability �. In other words,
the instability of the defensive alliance is induced either by
the temporal randomness or by the structural randomness. In
reality, these two different types of randomness may coexist.
However, from the practical computational difficulty, we in
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this paper only investigate the effect of each randomness
separately.

We first investigate the phase transition for the 2D regular
square lattice corresponding to the WS network with the re-
wiring probability �=0. Although this was previously stud-

ied �3�, we in this work use the extensive finite-size scaling
analysis to confirm not only the 2D Ising static universality
class, but also to identify the dynamic universality class de-
tected by the dynamic critical exponent z. In order to de-
scribe the alliance breaking transition, we define the order
parameter which functions as a magnetization in the Ising
model as follows:

m = �c0 + c2 + c4� − �c1 + c3 + c5� , �1�

where cs�Ns /N�s=0, . . . ,5� is the density of species s with
Ns being the number of sites occupied by s. When P is suf-
ficiently small, the defensive alliance is formed with c0
�c2�c4�1/3 and c1�c3�c5�0 or vice versa, leading to
m� ±1 �ordered phase�. When the system recovers its full
symmetry at a high mutation rate, all species have the same
density, yielding m�0. Only for convenience, we use

� � ln�1/P� �2�

as a control parameter. High mutation rates correspond to the
small values of the mutation parameter �, and thus qualita-
tively speaking, the physical meaning of � resembles that of
the inverse temperature in the standard statistical mechanics.

Numerical simulations are performed on systems of sizes
varying from L=32 to 192 with the periodic boundary con-
ditions employed. After equilibration for 104 steps per site,
which is sufficiently long enough, the thermal average is
computed for later 104 steps at least. The measured quantities
are ��m�	, the Binder’s cumulant �9�,

UL � 1 −
�m4	

3�m2	2 , �3�

and the susceptibility,

� � N��m2	 − ��m�	2� , �4�

where �¯	 denotes the thermal average. In order to study
dynamic critical behavior, we also measure the autocorrela-
tion function as a function of time t defined by

C�t� � ��m�t�m�0��	 − ��m�	2. �5�

The finite-size scaling forms of measured quantities are
written as �10�

��m�	 = L−�/�m̃†�� − �c�L1/�
‡ , �6�

UL = Ũ„�� − �c�L1/�
… , �7�

� = L�/��̃„�� − �c�L1/�
… , �8�

C�t�/C�0� = C̃�tL−z� , �9�

where m̃, Ũ, �̃, and C̃ are suitable scaling functions, �c is the
critical value of �, and � ,� ,� are standard critical exponents
�8�, while z is the dynamic critical exponent defined at �c
from the divergence of the relaxation time scale �	
Lz�.

Figure 2 summarizes the numerical results for the phase
transition in the 2D regular lattice. The order parameter ��m�	
shown in Fig. 2�a� exhibits the existence of the transition,

FIG. 1. �Color online� �a� The interaction topology used in this
work �model A in Ref. �3��. Arrow, e.g., from 0 to 1 indicates that
the species 0 is a predator to the species 1 �and thus the species 1 is
the prey to the species 0�. As time goes on the initial random con-
figuration in �b� evolves to �c�, where only three species ��0,2,4� or
�1,3,5�� exist to form the defensive alliance. Different colors indi-
cate different species in �b� and �c�.
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which is analyzed in detail in Figs. 2�b� and 2�c� by using the
finite-size scaling form in Eq. �6�. The critical point �c
=6.50�4� as well as critical exponents ��1/8 and ��1 are
obtained, which are confirmed again from the finite-size scal-
ing of the Binder’s cumulant shown in Fig. 2�d�. The diver-
gence of the susceptibility in Fig. 2�e� is analyzed to get �
�7/4. At �=�c, we compute the autocorrelation function
�5� and plot it in Fig. 2�f� in accord with the scaling form in
Eq. �9�: All curves at different sizes collapse well to a single
curve with the dynamic critical exponent z�2. All these
findings clearly confirm that the alliance breaking transition
induced by the mutation belongs to the 2D Ising universality
class as was known in Ref. �3�.

We next study the phase transition induced by the spatial
randomness introduced via the long-range shortcut in the WS
network model. One can motivate the study along this direc-
tion since in real systems, the spatial interaction topology
among species can be much more complicated than the
nearest-neighbor interaction on a regular square lattice. Dis-
tinguished from the regular network, the small-world net-
work �6,7�, which captures characteristics of many real net-
works very well, has a remarkably small average path length
similar to the globally coupled network �or the mean-field
case�. The three-strategy RSP game has been studied on
some small-world networks and the periodic flourishes of

three strategies were found to happen during the time evolu-
tion �11�.

We fix the mutation parameter to �=7.0, which is well
inside the ordered phase with the defensive alliance formed
for the 2D regular square lattice �see Fig. 2�. Use of a very
large value of �, corresponding to very small mutation rate,
was found to make the system approach a local dynamic
fixed point and then the system stays there forever. At �
=7.0, which is small enough to ensure the equilibration and
large enough to make the system ordered at small �, the
system is found to undergo a phase transition at �=�c
�0.28�1� as displayed in Fig. 3. The abrupt drop down of
the order parameter ��m�	 at the transition as displayed in Fig.
3�a�, together with the change of the histogram H�m�, nor-
malized to satisfy �mH�m�=1 �in Fig. 3�b�� clearly indicates
that the transition is of the discontinuous nature in a sharp
contrast to the finding for 2D regular lattice at �=0 �see Fig.
2�. In more details, the sudden change of the peak position of
H�m� between �=0.28 and 0.29 in Fig. 3�b� is interpreted as
strong evidence of a discontinuous transition. Continuous
transition, in general, exhibits the continuous shift of the
peak position toward m=0 as the critical point is approached
from the ordered phase.

In general, one can study the phase diagram of the model
in the 2D parameter space of �� ,��. Due to the practical

FIG. 2. �Color online� Phase
transition in the 2D regular lattice
in terms of the mutation parameter
�. �a� The order parameter ��m�	
versus � clearly shows the exis-
tence of the alliance-breaking
transition. �b� A unique crossing at
�c=6.50�4� with � /��1/8 is ob-
tained from the finite-size scaling
form of ��m�	. �c� All data points
for ��m�	 in �b� collapse into to a
smooth curve by using scaled
variables. �d� Binder’s cumulant at
different sizes cross at �c

=6.50�4� in agreement with �b�.
The inset in �d� shows that 
UL


L1/� to yield ��1, where 
UL

�UL��1�−UL��2� with �1,2 are
two adjacent points near �c. �e�
Shows the susceptibility �. The
inset shows a log-log plot of �
versus L at �c leading to ��7/4.
�f� The autocorrelation function
C�t� /C�0� at �c versus tL−1.9 with
z=1.9. All curves for different
sizes collapse well to a single
curve, indicating that the dynamic
critical exponent z=1.9�2�.
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difficulty to cover the whole parameter space, we in this
work only explore the phase transitions along the two
straights line in the �� ,�� plane: One on the axis �� ,�=0�,
and the other on the line ��=7.0,��. Both parameters � and
� control the amounts of randomness �temporal and spatial
ones, respectively�, and accordingly, the ordered phase with
the defensive alliance becomes unstable as either � is de-
creased �i.e., the mutation rate P is increased� or � is in-
creased. Not only the phase transitions have different natures
�the continuous one belonging to the 2D Ising universality
class for the former and the discontinuous one for the latter�,
but also the ordered and disordered phases in each case are
very much different in terms of the time evolution of densi-
ties of species. In the ordered and disordered phase on the
axis of �=0, the density of each species does not fluctuate
much but stays at almost the same level: For the ordered
phase at ���c ,cs�1/3 for s� �alliance
 and cs�0 other-
wise, while for the disordered phase at ���c ,cs�1/6 for
all species. In contrast, the time evolution cs�t� for the case
of the WS network at ��=7.0,�� is strikingly different. In
Fig. 4�a�, the time evolutions of densities of species are
shown for �=7.0 and �=0.27���c�. It is clearly shown that
the interalliance Z2 symmetry is broken, indicating that the
system has a nonzero value of the order parameter. Another
very important observation one can make from Fig. 4�a� is
that each species within the alliance �s=0,2 ,4� cyclically
dominates all the others in a very regular way, and very
interestingly, the species that does not belong to the domi-

nant alliance also prevails in a time-periodic manner. Even in
the disordered phase at ���c, the periodic dominance per-
sists while the interalliance symmetry is fully recovered �see
Fig. 4�b��.

We finally investigate the mean-field limit of the game
�12�, where all individual species interact with all the other
species in the system. The master equation for the number Ns
of species s is given by


Ns = P�− cs +
ci1

2
+

ci2

2
� + 2�1 − P�cs�ci1

+ ci2
− cj1

− cj2
� ,

�10�

where 
Ns�Ns�t+1�−Ns�t�, i1 and i2 �j1 and j2� are two
preys �two predators� of s. For example, the species s=0 has
i1=1, i2=2, j1=4, j2=5 �see Fig. 1�a��. The term propor-
tional to P describes the decrease of Ns by the mutation from
s to its predators and increase of Ns by the mutation from its
preys to s. The other term originates from the interaction of s
to other species: When s meets its preys �predators� Ns is
increased �decreased�. The numerical factor two in front of
�1− P� is due to the interaction of other species with s. If we
start from the situation when c0=c2=c4= �1+m� /6 and c1

=c3=c5= �1−m� /6, with the order parameter m in Eq. �1�,
the above master equation is reduced to a very simple form

FIG. 3. �Color online� Phase transition in the WS network in
terms of the rewiring probability �. The mutation parameter is set to
�=7.0. �a� The order parameter ��m�	 as a function of � shows a
sudden drop at �c�0.28. The change of ��m�	 becomes steeper as L
is increased, indicating that the transition is a discontinuous one. �b�
The normalized histogram H�m� of m for L=1024 is displayed at
�=0.27, 0.28, and 0.29. The abrupt change in the form of the his-
togram between �=0.28 and 0.29 clearly confirms again discon-
tinuous transition.

FIG. 4. �Color online� Time evolution of density of species cs�t�
for the WS network for L=1024 at �=7.0. �a� At �=0.27, the
interalliance symmetry is broken, suggesting m�0, and each spe-
cies in the alliance dominates all the other species in a time-periodic
fashion. It is interesting to note that the nondominant alliance is also
formed and even the member of the nondominant alliance prevails
periodically. �b� At �=0.29, the system recovers its full symmetry
and each species is equivalent to others. However, the time evolu-
tion of cs�t� is still periodic, in contrast to the disordered phase in
2D regular lattice. The time t is measured after stationarity is
achieved.
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dm

dt
= m�t + 1� − m�t� = − NPm , �11�

yielding the solution

m�t� = m�0�exp�− t/	� �12�

with 	= PN. The mean-field solution indicates that there is no
ordered phase at any nonzero value of the mutation rate, i.e.,
the defensive alliance cannot be formed in the mean-field
limit. It is also noteworthy that the time-periodic behavior
observed for the WS network in Fig. 4 ceases to exist in the
mean-field case. The simulation results displayed in Fig. 5
for the mean-field model are in perfect agreement with the
above analytic findings: The ordered phase that appears to
exist for small system sizes drifts away toward the region of
higher value of � as N is increased, suggesting the disappear-
ance of the ordered phase in the thermodynamic limit �see
Fig. 5�a��. There is no time-periodic behavior of m in equi-
librium as shown in Fig. 5�b�, where t is measured after
equilibration.

In summary, we have investigated the instability of the
defensive alliances for the simple food web of six species in
three different spatial interaction structures: the 2D local
regular square lattice, the WS network, and the globally
coupled mean-field network. The temporal randomness im-
posed by the mutations as well as the spatial randomness in
the interaction structure tuned by the rewiring probability in
the WS network has been shown to make the defensive alli-
ance unstable. When the mutation rate is increased for the
2D square lattice, the alliance-breaking transition has been
clearly identified to belong to the 2D Ising universality class
due to the common Z2 symmetry. On the other hand, when
the rewiring probability is increased, the transition becomes
discontinuous, and around the transition the natures of the
ordered and disordered phases are very different from the 2D
square lattice. The mean-field model has also been studied
analytically and numerically with the results that the defen-
sive alliance cannot be formed at any value of the mutation

rate and that the time-periodic behavior observed in the WS
network is not seen any longer.
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FIG. 5. �Color online� Numerical results for the mean-field case.
�a� The order parameter ��m�	 versus � for N=322 ,642 , . . . ,5122. As
N is increased, the region for the ordered phase shifts toward higher
values of �, indicating that the defensive alliance vanishes in the
thermodynamic limit at any nonzero value of the mutation rate. �b�
Time evolution of the order parameter m�t� is not periodic at all,
which is different from the WS network shown in Fig. 4.
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